Electro-hydraulic Control system DFE1

Technical data sheet

Size 125...355
Series 30
Nominal pressure 350 bar
Peak pressure 400 bar
open circuit

Contents

Type code - standard range
Components
Functional description
DFE1
DFE1Y
DFE1Z
Transition at jump in command input for swivel angle
Quality of control
Unit dimensions
Safety information

Features

2 The DFE1 control system is used for the electro-hydraulic control of
4 – Pressure
5 – Flow
6 – Power (optional)
8 The control system is used together with the axial piston pump A4VSO in sizes 125, 180, 250, and 355 acc. to RE 92050.

Type code - standard range

<table>
<thead>
<tr>
<th>Fluid/Version</th>
<th>125</th>
<th>180</th>
<th>250</th>
<th>355</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral oil (Without prefix)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>HF-Fluids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High speed</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Axial piston unit
- Swashplate design, variable, industrial use 350 bar, peak pressure 400 bar

Mode of operation
- Pump, open circuit

Size
- Displacement \(V_{\text{max}} \) [cm³]

Type of control
- Electronic pressure-flow control
- Internal supply of control oil, swivel range -100% to +100%
- External supply of control oil, swivel range -100% bis +100%
- External supply of control oil, swivel range 0 bis +100%

Series
- 30

Direction of rotation
- Looking at shaft end
 - clockwise: R
 - c. clockwise: L

Seals
- NBR Nitrile-Rubber to DIN ISO 1629 (shaft seal in FKM)
- FKM Fluoro-Rubber to DIN ISO 1629

Shaft end
- Cyl. with key DIN 6885
- Splined end DIN 5480

● available
○ in preparation
- not available
Mounting flange

- **ISO 4-hole**

Port for service lines

- Pressure port B, Inlet port S: SAE on side 90° offset, fixing screws metric
- Pressure port B, Inlet port S: SAE on side 90° offset, fixing screws metric
- 2. Press. port B, opposite B, on delivery closed with blanking plate

Through drive

<table>
<thead>
<tr>
<th>Through drive</th>
<th>125</th>
<th>180</th>
<th>250</th>
<th>355</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange ISO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125, 4-hole</td>
<td>32x2x30x14x9g radial</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>140, 4-hole</td>
<td>40x2x30x15x9g radial</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>160, 4-hole</td>
<td>50x2x30x24x9g radial</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>224, 4-hole</td>
<td>60x2x30x28x9g radial</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>70x3x30x22x9g radial</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Flange SAE J744

<table>
<thead>
<tr>
<th>Flange SAE J744</th>
<th>Coupler for splined shaft</th>
<th>Seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>92-2 (A) 5/8 in (A) radial</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>92-2 (A) 3/4 in (A-B) radial</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>101-2 (B) 7/8 in (B) axial</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>101-2 (B) 7/8 in (B) radial</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>101-2 (B) 1 in (B) radial</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>127-2 (C) 1 1/4 in (C) radial</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>127-2 (C) 1 1/2 in (C-C) axial</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>152-4 (D) 1 3/4 in (D) axial</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Combination pumps

If a second Rexroth pump is to be factory mounted, then both type codes are to be connected with a „+“ . Type code 1. Pump + Type code 2. Pumpe

Example: A4VSO 250 DFE1/30R - PPB13K34 + A4VSO 125 DFE1/30R - PZB13N00

If an auxiliary pump is to be factory mounted, please contact us.
Components

The control system DFE1 comprises the following components:

- Well proven high pressure axial piston pump A4VSO in swashplate design for use in heavy duty industrial applications
- Proportional valve VT-DFP-A-2X for exact control with feedback of valve spool position (see RE 29 016)
- Inductive displacement transducer for feedback of swashplate angle
- Pressure transducer HM 12-1X for feedback of system pressure to RE 29 933 (optional, only required with pressure and power control functions, please order separately)
- Analog amplifier VT 5041-2X to RE 30 240 (please order separately)

The system contains the following features:

- Pump combinations are possible
- Control pressure internal or external via pilot pump (see page 7 and 8)
- Fast decompression of trapped fluid by letting the pump go over center as a standard (see page 6)
- Rotary group optimised for long life in standby operation
Functional description

The power, pressure and displacement control of pump A4VSO-DFE1 is accomplished by means of an electro-proportional control valve (4). A current to the proportional valve results in an oil flow to the pump’s control piston (2), which determines via the displacement transducer (3) the swashplate angle (1) and thus the pump flow.

With the pump in standstill, and the control system without pressure, the bias spring will push the pump to max. displacement \(V_{\text{gmax}} \).

Standby pressure (DFE1):

With a de-energized proportional valve and a closed pump outlet the pump will go to \(V_{\text{gmin}} \) - Standby pressure. In this condition the pressure level will reach 4 to 8 bar. The same applies also in case of an error signal or missing control release.

If the standby pressure of 4 to 8 bar is not desired, it is possible to use type DFE1Y, or DFE1Z.

The necessary oil to operate the hydraulic control system can be supplied in two different ways:
1. Internal (DFE1) from own pump outlet (page 6)
2. External (DFE1Y, DFE1Z) from separate system (page 7/8)

The proportional valve is controlled with amplifier card VT 5041-2X. This card processes all control signals which are necessary to operate pump A4VSO. DFE1 Standard are input signals for pressure and swivel angle as well as an optional signal for power control. The actual value for pressure is picked up by a pressure transducer. A displacement transducer picks up the actual pump swivel angle. The amplifier card compares these actual values with the command inputs. A minimum value generator assures the activation of the appropriate controller. The output signal of this generator is used as the input signal to the proportional valve solenoid. In order to achieve a better quality of control, the proportional valve operates as a secondary control loop.
DFE1

Control oil supply internal, Swivel range -100% to +100%

With DFE1 the control energy is taken out of the main pump flow. The min. pressure must be at least 4 to 8 bar. (see also point „Standby pressure” on page 5 and „Fail safe feature“)

This min pressure is necessary for the control of flow, pressure and power. Below this pressure, the pump tends to go to max. displacement regardless of the input signals.

As a special feature the pump is able to change the direction of flow. This capability to swivel over center enables a fast decompression of trapped oil volume.

Fail safe feature

Below 4 to 8 bar the pump will stroke to larger displacement; an undesired operation with negative flow cannot occur.

1) optional, power limiting

2) only needed with pressure resp. power control
DFE1Y

External supply of control oil,
Swivel range -100% to +100%

With DFE1Y the control energy has to be supplied externally, eg. a gear pump. An automatic change-over to internal supply is accomplished by means of a shuttle valve.

This control version features a reversal of the direction of flow, also at pressures below 4 to 8 bar. This option enables a fast decompression of trapped oil volume by swiveling over center.

Caution!

- In the case of an externally supplied control system (Swivel range ± 100%), the function, which swivels the pump to zero stroke when the output stage of the control card is de-energized is inactive.

- In the case of a de-energized output stage of the control card (e.g. in case of an error), the external control pressure pushes the variable pump's swashplate to the negative limit stop (100% flow is delivered from the system to the tank). In order to avoid cavitation the use of a checkvalve (anti cavitation valve with 0,2 bar spring) is required.

- When an error is detected, the output stage switches off and the external supply causes the pump to swivel towards the negative limit stop. Upon detection of an error message, it is essential that the machine control responds (e.g drive motor of the pump must be switched off, external supply of the control system must be interrupted).

- The command values for pressure and flow must always be greater than zero ($p_{\text{comm}} \geq 3\text{bar}$, $\alpha_{\text{comm}} \geq 5\%$), since, due to drift or inaccurate control, there is no exact “zero” pressure or “zero” swivel angle. Under unfavourable conditions, smaller command values can cause cavitation.

1) optional, Power limiting
2) only needed with press. resp. power control
DFE1Z

Control oil supply external, swivel range 0 to 100%

Version DFE1Z has an input port for external supply of control flow, e.g. from a gear pump. The DFE1Z control offers a \(Q_{\text{min}} \)-limiting screw which prevents the unit from going over center. Therefore, the option of fast decompression of trapped oil volume does not exist with this version.

1) optional, power limiting
2) only needed with press. resp. power control
Transition at jump in command input for swivel angle

Size 125, \(p = 100 \text{ bar} \)

Size 180, \(p = 100 \text{ bar} \)

Size 250, \(p = 100 \text{ bar} \)

Size 355, \(p = 100 \text{ bar} \)
Quality of control

<table>
<thead>
<tr>
<th></th>
<th>Swivel angle control</th>
<th>Pressure control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity tolerance</td>
<td>≤ 1,0%</td>
<td>≤ 1,5%</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>≤ 0,2%</td>
<td>≤ 0,2%</td>
</tr>
<tr>
<td>Repeatability</td>
<td>≤ 0,2%</td>
<td>≤ 0,2%</td>
</tr>
</tbody>
</table>

(The above values are only valid when using the appropriate components acc. to the ordering code)

Unit dimensions

Sizes 125 to 355 (Shown: size 125 in clockwise rotation)

<table>
<thead>
<tr>
<th>Size</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 [mm]</td>
<td>121</td>
<td>298</td>
<td>250,5</td>
<td>376</td>
<td>147</td>
<td>177</td>
<td>50</td>
<td>209</td>
</tr>
<tr>
<td>180 [mm]</td>
<td>121</td>
<td>298</td>
<td>250,5</td>
<td>376</td>
<td>147</td>
<td>177</td>
<td>50</td>
<td>209</td>
</tr>
<tr>
<td>250 [mm]</td>
<td>154</td>
<td>345</td>
<td>310,5</td>
<td>438</td>
<td>212</td>
<td>179</td>
<td>55</td>
<td>259</td>
</tr>
<tr>
<td>355 [mm]</td>
<td>154</td>
<td>345</td>
<td>310,5</td>
<td>464</td>
<td>212</td>
<td>179</td>
<td>55</td>
<td>259</td>
</tr>
</tbody>
</table>

Ports

<table>
<thead>
<tr>
<th>Ports</th>
<th>125</th>
<th>180</th>
<th>250</th>
<th>355</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>M14x1,5</td>
<td>M14x1,5</td>
<td>M14x1,5</td>
<td>M14x1,5</td>
</tr>
<tr>
<td>B</td>
<td>1 1/4</td>
<td>1 1/4</td>
<td>1 1/2</td>
<td>1 1/2</td>
</tr>
<tr>
<td>T</td>
<td>M33x2</td>
<td>M33x2</td>
<td>M42x2</td>
<td>M42x2</td>
</tr>
<tr>
<td>MB</td>
<td>M14x1,5</td>
<td>M14x1,5</td>
<td>M14x1,5</td>
<td>M14x1,5</td>
</tr>
<tr>
<td>MS</td>
<td>M14x1,5</td>
<td>M14x1,5</td>
<td>M14x1,5</td>
<td>M14x1,5</td>
</tr>
<tr>
<td>S</td>
<td>2 1/2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>K1, K2</td>
<td>M33x2</td>
<td>M33x2</td>
<td>M42x2</td>
<td>M42x2</td>
</tr>
<tr>
<td>R(L)</td>
<td>M33x2</td>
<td>M33x2</td>
<td>M42x2</td>
<td>M42x2</td>
</tr>
<tr>
<td>M1, M2</td>
<td>M14x1,5</td>
<td>M14x1,5</td>
<td>M18x1,5</td>
<td>M18x1,5</td>
</tr>
</tbody>
</table>
Safety information

- Pump A4VSO was designed for operation in open loop circuits.
- Systems design, installation and commissioning require trained technicians or tradesmen.
- All hydraulic ports can only be used for the fastening of hydraulic service lines.
- Tightening torques:
 The tightening torques mentioned in this data sheet are maximum values and must not be exceeded (max. values for thread). Manufacturers information concerning the maximum permitted tightening torques of the various fittings are to be observed! For DIN 13 mounting bolts, we recommend that tightening torques be checked on a case by case basis in accordance with VDI 2230, published 2003.
- During and shortly after operation of a pump the housing and especially a solenoid can be extremely hot, avoid being burned!